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SUMMARY 

This is the second of two articles intended to  develop, apply and verify a new method for averaging the 
momentum and mass transport equations for turbulence. Part I presented the theoretical development of a 
new space-time filter (STF) averaging procedure. The new method, as well as all existing averaging 
procedures, are applied to the one-dimensional transient equations of momentum and scalar transport in a 
Burgers’ flow field. Dense-grid ‘exact’ results from the unaveraged equations are presented to depict the 
dynamic behaviour of the flow field and serve as a basis for verifying the coarse-grid STF predictions. In this 
paper, a finite difference procedure is used to numerically solve the new STF averaged equations, as well as the 
other forms of the averaged equations derived in Part I. All averaged equations are solved on the same coarse 
grid. The velocity and scalar fields, predicted from each equation form, are intercompared according to a 
verification procedure based on the statistical and spectral properties of the results. It is found that the new 
STF procedure improves coarse-grid dynamic predictions over the existing methods of averaging. 

KEY WORDS Turbulence Modelling Large Eddy Simulation Filtering One-Dimensional Scalar Transport 
Burgers’ Flow 

INTRODUCTION 

In the first paper of this series a new space-time filter (STF) was derived and used to average the 
one-dimensional Burgers-type equations for momentum and scalar transport. As part of this 
development, other existing methods of spatial or temporal averaging were reviewed and also used 
to average one-dimensional Burgers forms of the momentum and scalar transport equations. Since 
dynamically varying Burgers solutions are to be used to test the STF filter, an ‘exact’ solution for 
such a case was identified and calculated by a dense grid finite difference procedure. The grid used 
in the ‘exact’ solution fully resolved all the time and space fluctuations in the flow field. 

The purpose of this paper is to solve the new STF averaged equations on a coarse grid, and 
evaluate the performance of the method by comparison to data from the dense grid solution. Prior 
to the comparison, the dense grid solution is averaged commensurate with the scale sizes inherent 
in the STF filter. The performance of the other averaging procedures is similarly evaluated, and all 
results are intercompared by means of checks on the ability of the models to reproduce the 
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Table I. The average Burgers' equation 

Unaveraged (Al)  
au 1 a 
-+-,[uu] 
at 20x 
au 1 a 
- + -- [UU] Reynolds averaging (A2) 
at 2ax 

Uniform spatial 
averaging 

Leonard's averaging 

Leonard's averaging and 
Clark's reduction (A3) 

STF 

STF with Clark's 
reduction (A4-A6) 

aii 1 a 
- + -- [UU] 
at 2dx 

= v 7 - - T- (till - UU) + 2UU' + u'u' 
cx2 s 2 U  2tY i- ~ -\ 

Table 11. Averaged one-dimensional scalar transport equation 

22c dc a 
ac cx CX 

- 
Unaveraged (Al)  -+,[uc] -a= 

ac i: 
at ox 

Uniform spatial a 
- + - Cur] 

Averaging at ax 

at sx 

Reynolds averaging (A2) - + [UC] 

ac A: a2uc 
-+- f iC+--  

? [ 4 y  dx21 
Leonard's averaging 

Leonard's averaging 
with Clark's 
Averaging (A3) 

STF 

STF with Clark's 
reduction (A44A6) 
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statistical and spectral details of the exact solution. A comparison of energy distribution and 
transfer is also performed. 

MODEL EQUATIONS 

Governing transport equations 

The one-dimensional Burgers' flow and passive scalar transport equations are derived in the first 
paper using seven different forms of space or time averaging. Tables I and I1 contain the equations. 
The new STF filtered equations are the sixth and seventh forms. Here the overbars denote averaging 
according to whatever averaging definition was used. The As are filter coefficients to be specified 
later. In Tables I and 11, the residuals resulting from averaging have not been closed. 

Residual closure 

To close the residual terms UIU) and UIC), the Boussinesq concept is used, i.e. 
~ 

u'u' = - K(dii/dx), ( 1 )  

U'C' = - D(dc/dx). ( 2 )  
K is an eddy viscosity and D is an eddy diffusivity related to K by a turbulent Schmidt number 
S, = K/D.  For K ,  the following model is used to calculate the local instantaneous values: 

where C, is a non-dimensional residual field coefficient, 6, is the spatial grid spacing and the 
overbars denote averaging over a length wand a time period p .  When w = 0 and p = 0, equation (3) 
is a one-dimensional analog ofthe Smagorinsky model.'-3 In the limit w = L(the total length ofthe 
solution domain) equation (3) is analogous to the direct interaction closure used by Leslie and 
Quarini4 and Love and L e ~ l i e . ~  The values for w,  p and C, are selected in subsequent sections. 

Energy equation 

As part of the verification procedure, the energy equations derived from each of the momentum 
equations in Table I are depicted in Table 111. The energy equation is derived by multiplying each 
term in the respective momentum equation by the velocity, and taking an ensemble average, which 
is denoted by ( ). The equations are derived using the residual closure forms as in the previous 
section. After solution for the velocity field, the size ofeach numbered term in the energy equation is 
estimated by numerical discretization and used to create time histories which are then compared to 
the time histories from the exact solution. 

NUMERICAL PROCEDURE 

In analogy to References 4 and 5, an explicit finite difference scheme is used to solve the equations in 
Tables I and 11, and estimate the size of the individual terms in Table 111. Complete details are 
found in Reference 6. The scheme ensures overall fourth order accuracy for the non-linear terms, 
which is required because of their importance in transferring turbulent energy and propagating the 
steep gradients in the turbulent variables. The viscosity and diffusivity terms are discretized by 
usual second-order accurate central schemes. 
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The Adams-Bashforth method was selected to calculate the advance in time. The method is 
explicit, second order accurate in time and weakly ~ n s t a b l e . ~  Because it uses information at three 
time levels, it may develop computational modes the severity of which depends on the grid 
spacings. This problem is controlled by the size of the grid spacings. 

MODEL IMPLEMENTATION 

Selection of $xed input parameters 

The total length of the one-dimensional simulation domain is chosen to be 12 L where L is an 
arbitrary unit of length. The total time of simulation is one arbitrary unit of time, T. For the ‘exact’ 
or dense-grid calculation the length 12 L is divided into 4026 equal intervals, and the time T into 
2013 equal time steps. These grid spacings are small enough to resolve all the spatial and temporal 
scales in the unaveraged quantities typically calculated in this research. 

The Schmidt numbers are unity, so that the molecular diffusivity, a, is equal to the molecular 
viscosity, v.  Also, the eddy diffusivity, D, is set equal to the eddy viscosity, K ,  though it  may in fact be 
different. For all coarse-grid calculations, the spatial filter width, A,, is equal to 26, where 6, is the 
spatial grid spacing. The residual field coefficient, C,, is set equal to 4.0. These values have been 
optimized by Love’ who used the Leonard’s averaging scheme. 

The values of wand p ,  in equation (3), are initially set equal to 14 6, and 146,, respectively. Here 6, 
is the time step size. The length w is bisected by the node under consideration and the period p 
includes the uncentred previous 14 time steps so that the solution procedure remains explicit. The 
tests used to optimize the values of w and p are presented in a later section. 

D Ln 

Figure 1. Momentum field initial condition 
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Initial and boundary conditions 

The initial velocity distribution is a discrete random signal in x. The signal is generated as 
described by Shinozuka and Jan’ with target and actual wave number (w) spectra as shown in 
Figure 1. Note that the inertial subrange is devoid of any significant spectrum values. This makes it 
possible to observe the gradual development, at later time steps, of a spectral distribution with the 
expected w - ~  dependency in the inertial subrange. The spectrum in Figure 1 has a maximum at 
logo  = 0.5235; thus the most significant length scale, Lo, is (l/log-’ 0.5235) or 0.299 L, and the 
most significant velocity scale, V,, is the mean of u(x, 0), which is equal to 3.0 LIT. The molecular 
viscosity, v, is then determined by 

(4) 

where R, is the variable Reynolds number. 
The initial concentration field is uniform over the spatial flow field and equal to one arbitrary 

unit of concentration. This makes it possible to observe how the scalar ‘pollutant’ is convected by 
the velocity field. For solving both the momentum and concentration equations, the periodic 
boundary conditions are used: 

(5) 

v = Lo V,JR, = 09O8/R,(L2/T), 

u(x, t )  = u(x + 12L, t), 

c(x, t )  = c(x + 12 L, t). 

Experiments performed 

An extensive series of numerical experiments was performed to test the new filter against existing 
filters, and the results presented in this paper will concentrate on comparing the various filters in 
calculating a known flow with a Burgers’ Reynolds number of 500. Since the time filter width is a 
new and unknown variable, additional test results are presented to demonstrate the sensitivity of 
the results to its size. Table IV lists the coarse grid numerical experiments and its first column 
contains the run numbers which will appear next to all the curves depicting the results. In Table 
IV, A, is the temporal filter width, R, is the Reynolds number and N and M are the numbers of 
nodes and time steps, respectively. 

Output presentation procedure 

The unaveraged equations are first solved on a fine grid using the data given earlier in this section 
and a Reynolds number of 500. The resulting ‘exact’ u and c fields are averaged to extract the U and 7 

Table IV. Coarse grid simulations for evaluating the averaging 
method 

Run Averaging 
number method N M 

A1 
A2 Reynolds 
A3 Leonard’s 
A4 STF 
AS STF 
A6 STF 

~ 0 
0 
0 500 

46, 
86, 
106, 

806 470 
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Dense Grid f o r  S o l v i n g  the  

7 Orlglnal  Equations 

I 
Coarse Grid Planned f o r  

S o l v i n g  t h e  Modeled E q u a t i o n s  

Figure 2. Grid definitions for large scale averaging 

fields commensurate with the grid spacings of Table IV. Ideally, this extraction should be done via 
the same averaging operations used to derive the averaged equations. The averaged equations, 
however, are solved repeatedly using three different averaging methods and a wide range of filter 
widths. As an approximation, the extraction will be done following the procedure of Clark et ul.’O 
In this procedure, the large-scale component ofa certain variable at point A (Figure 2) is simply the 
arithmetic average of the exact values at the circled nodes on the dense grid. The U and ?fields thus 
obtained are called the ‘exact-averaged’ fields and are used to verify the ii and cfields obtained from 
the runs listed in Table IV. 

The verification involves comparing time histories of U and C at fixed locations and spatial 
distributions at certain time steps, as well as the following statistics: ( 1 )  wave number spectra of the 
spatial distributions at certain time instants, (2) frequency spectra of the time signals at specified 
spatial locations and (3) time histories of the spatial variance, skewness and kurtosis. Also, as a part 
ofthe verification procedure for Table IV runs, the time histories of the energy terms (Table I l l )  are 
plotted. The purpose of these plots is to observe the relative size of each of the terms and their role 
in the energy field balance. 

For a general (space or time) signal, xi, consisting of N points ( i  = 1,2, .  . . , N )  with a spacing 0 
between the points, the statistics mentioned above are calculated as follows: 

N 
Mean = (I/N) !xi, 

i =  1 
(7) 
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N 
Variance = (1/N) (ai - Mean)', 

i =  1 

[N(Var ian~e)~ '~] ,  
i =  1 

Kurtosis = 1 (ai - Mean)4 " i =  1 

(9) 

NS 

k =  1 
Spectrumj = (26/71) 1 & k R k  COS[ ( j - l)(k - l)z/(NS - I)], 

Wave numberj or frequencyj = ( j -  1)/[26(NS - l)], 

(1  1 )  

(12) 

where 
gk = 1/2 (for k = 1 ,  NS) 

= 1 (for k = 2,3,. . . , NS - I). 

Rk stands for the autocorrelations: 
N - k + l  

R , = [ l / ( N - K +  l ) ]  (c t -M~ean)(a ,+~- ,  -Mean). (14) 
1 = 1  

The indexjtakes the values 1,2,. . . , NS where NS is the required number ofpoints in the computed 
spectrum. NS is usually chosen within the range 0.15N to 025N. The wave numbers or frequencies, 
calculated by equation ( 1  2), are in cycle/unit-of-length or cycle/unit-of-time depending on the 
nature of the spacing 6. The skewness is calculated by equation (9) only for the concentration fields. 
For velocity fields, the following formula" is used instead: 

(1/N) i =  f 1 ( S l ~ p e , ) ~ ]  

where 

Slope, = (ai+ - ai- ,)/26. 

RESULTS 

Optimization of w and p 

In order to optimize the values of w and p in  equation (3), run number A6 was repeated using a 
range of values for these parameters. The spatial distribution of the eddy viscosity, K ,  was 
calculated at every time step by equation (3). The maximum nodal values were chosen and plotted 
against time in Figure 3. It is seen that the values w = 146, and p = 146, produce the smoothest and 
best behaved time history of the eddy viscosity K .  These values of w and p were used in all the 
coarse-grid runs. 

Mean flow distributions 

The results of the runs listed in Table IV are processed as discussed above and plotted in Figures 
4-10. Each plot is marked by its run number and compared to the exact averaged data which is 
marked 'EA'. In Figure 4, the velocity plots marked A1 show clearly that the coarse grid is not 
suitable for solving the unaveraged equations. Averaging improves the predicted signals by 
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. o o  

Figure 3. Time behaviour of eddy viscosity as function of IV and p 

removing the noise from the spatial distributions as well as the time histories of the variables. This 
smoothing capability clearly increases as the averaging procedure changes from A I to A6. 
However inspection of the velocity spatial and temporal distributions in Figure 4 reveal that thc 
new STF filter model results are smoother than the Al,  A3 results. 

Inspection of Figure 5 for the concentration distributions shows the same trend towards 
increasing agreement with the EA curve with increasing filter complexity. The presence of more 
'shock-like' behaviour in the concentration simulation contrasts sharply with the 'wave-like' 
behaviour in the velocity distributions and represents a serious challenge for the numerical 
discretizations used in the contaminant equation model. The A6-STF curves d o  portray the shock 
behaviour but more high frequency activity is calculated than in the EA curve. Further, thc 
amplitude of the A6 shocks is reduced compared to the EA curves. Of course, some amplitude 
increase is expected in the EA curve due to the averaging procedure. But the difference noted here 
cannot be fully explained by the averaging inconsistency. 

Spectral behaviour 

Figures 6 and 7 show wave number and frequency spectra of the predicted U and (. fields. 
Observation of the low frequency end of the velocity spectrum reveals that all the model averaging 
techniques portray the energy peak well both with respect to amplitude and its frequency or wave 
number of occurrence. For the concentration variance spectra in Figure 7 all the low frequency 



74 Y. M .  DAKHOUL AND K.  W. BEDFORD 

m 

* 
-0 0 ._ 
a m  
1 
W 

+O 

I '  

0 Ln 

T I M E  
4 . 0 0  2l.40 U'.80 7l.20 9l.60 ,!OO 0'.20 O'.UO 0'.60 O'.BO j . 00  

D I S T R N C E  

EA 

D I S T R N C E  T I M E  

0 m 

4 . 0 0  2l .40 4'.60 71.20 9l.60 I L . 0 0  %.OD 0.20 0.110 0.60 0.80 1.0(1 
D I S T R N C E  T I M E  

Figure 4. Velocity time and space predictions as functions of averaging method 

model spectra have a reduced amplitude compared to the EA, but the occurrence of the maximum 
variance is as expected. This low frequency amplitude reduction is consistent with the results 
presented in Figure 5. 

The noise in the spatial and temporal distributions in Figures 5 and 6 is depicted in Figures 6 a n d  
7 by the rising tails of the spectral curves. Note that the noise is maximum in run A1 in which the 
governing equations are not averaged. The Reynolds method of averaging (curves A2) clearly 
eliminates a large percentage of the noise. With the same grid density, the Leonard's method 
(curves A3) further improves the results by removing more of the undesirable high frequency and 
high wave number noise. The best results are obtained by the STF method (curves A4, A5, A6) 
which introduces the additional temporal filter term. As the filter width A, increases, more noise is 
eliminated until the 'EA' curves are almost duplicated by A6 in which A, is equal to 10 6,. I t  is 
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Figure 5. Concentration time and space predictions as functions of averaging method 

important to mention that the spectral curves given in Figures 6 and 7 are 'envelopes' to the actual 
plots which look similar to those given in Part I of this series. The envelopes facilitate drawing and 
comparing several spectral distributions in one plot. 

Another interesting feature in Figures 6 and 7 is the wave number (or frequency) location at 
which the tails of the spectral envelopes start to rise, indicating a non-plausible calculation. Each 
averaging method (including no averaging) accurately predicts the portion of U and C spectra to the 
left of this location. Since this rising point shifts towards higher wave numbers and higher 
frequencies as the averaging methods change from A1 to A6, it follows that the new STF method is 
properly capable of calculating flows with more high frequency or wave number activity than the 
previous methods are capable of handling with the same grid. 
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Figure 6. Momentum wave number and frequency spectra as functions of averaging method 

, 2 2  

. o o  

Figure 7. Scalar wave number and frequency spectra as functions of averaging method 

Statistical summary 
Figure 8 shows time evolution of the U statistics as obtained from Table IV runs compared to the 

exact-averaged data. It is immediately noticed that as expected run A1 (no averaging) results in 
completely erroneous statistics. Runs A2LA6 give quite similar statistics, which are fairly 
comparable to their exact-averaged counterparts. In all average forms A2-A6, the skewness is 
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Figure 8. Time behavior of velocity fluctuation 
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statistics as functions of averaging method 

00 

overpredicted at longer time and the kurtosis is first underpredicted then overpredicted resulting in 
a fairly uniform value in time. 

The 2 statistics are shown in Figure 9. Again, the A1 curves are in complete disagreement with 
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Figure 9. Time behavior of scalar fluctuation statistics as functions of averaging method 

the E A  curves. Curves A2-A6 are similar and show a behaviour comparable to the E A  curves. It is 
noted that the A2 curves appear to be in a slightly closer quantitative agreement with the exact- 
averaged data than the A6 curves. This is also true for the U statistics shown in Figure 8. The reason 
is that the E A  curves are obtained from the exact u and c signals after averaging them according to 
the method shown in Figure 2. Had the exact ~i and c signals been filtered in the same fashion as the 
equation generating the A3-A6 curves, their deviations from the ‘mean’ would have been 
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Figure 10. Time behaviour of energy terms (Table 111) as functions of averaging method 
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obviously reduced. This reduction should in turn reduce the magnitudes of the three statistics, 
which are based on the deviation from the mean, and bring the E A  curves closer to the A6 curves. 
This expected reduction in the magnitudes of the three statistics applies to all the E A  curves in 
Figures 8 and 9 except the velocity skewness in Figure 8. The velocity skewness is calculated by 
equation (1 5) rather than the usual skewness formula (9). Since equation (1 5) does not include the 
deviations from the mean, the E A  skewness may not necessarily be reduced if the exact u and c 
signals were filtered consistently. 

Structure of the energy equation 

Figure 10 shows the rewards of improving the averaging method. Time evolutions for each term 
in the energy equation (Table 111) are given for runs A1 -A6. The gap between the L.H.S. and the 
R.H.S. curves in the A1 plot shows the inaccuracy of the calculations. This gap is reduced gradually 
towards the A6 plot where the L.H.S. and the R.H.S. curves are almost identical. In all plots, the 
non-linear term (term 1) does not contribute to the energy change at all. The filter terms (terms 2 
and 3 )  are proportional to their respective filter widths. They both start at zero and grow with time 
to reach a maximum when the shocks are fully developed. Then, the size of the filter terms decreases 
as the velocity field decays. Note that the temporal filter term is significantly larger than the spatial 
filter term. 

The molecular and turbulent dissipation terms (terms 4 and 5) are governed by R, and the grid 
spacings. Since these are constant for all plots in Figure 10, terms 4 and 5 show little change from 
one plot to another. Note that the major portion of the energy change is caused by the molecular 
and turbulent viscosity terms, i.e. the SGS motion. The spatial filter terms contribute very little to 
the dissipation, which implies that they act as a medium for transferring energy from the large-scale 
to the SGS motion where it  is dissipated. However, during the initial and highly transient start-up 
phase of the calculation the time filter portion is significant in assisting the energy dissipation. I t  is 
anticipated therefore that these terms will play such a role in any calculation where the forcing or 
boundary conditions are dynamic. The excellent agreement between the L.H.S. and R.H.S. total of 
the energy equation implies excellent conservation of energy capabilities. These authors attribute 
the very fine agreement to the additional time and space filter. Such energy conservation will allow 
more accurate long-term calculations. 

E V A L U A T I O N  

The results presented in the preceding section demonstrate that the new space-time filter improves 
the calculation of transient flows containing variability in the velocity field. 

The results demonstrate that, for the range of conditions presented here, the STF prepared 
models produce greatly improved mean velocity field calculations which include very accurate 
reproduction of the wave-number spectra. Further, the frequency spectra are also portrayed 
accurately, indicating that the improvement in the calculation resides in both time and space. The 
conservation of energy behaviour particularly, with the optimized p and w is exceptional. The 
structural analyses of the energy equation also reveals that the time filter term plays an important 
role in the time evolution of the energy distribution and dissipation. 

Two features of these results require further elaboration. The first item involves the passive 
scalar calculation and the necessity of the model to predict ‘shock-like’ behaviour. Clearly from thc 
EA curves, the expected calculation from the averaged models is the prediction of very high 
gradient repetitive spikes of concentration. The STF prediction (Figure 5, A6) does reproduce the 
spikes but with reduced amplitude and increased spread marked by the presence of parasite high 
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frequency wave activity at the trailing edge of the wave. Two possible sources of these errors exist. 
The first is that, as noted, a centred approximation for the first order advection term was used. 
Difficulty in reproducing such high gradient behaviour is often observed’ ‘ 7 ’  * with centred 
discretizations containing symmetric coefficients. Therefore for the passive contaminant equation 
a characteristic-based p r ~ c e d u r e ’ ~  has been developed and is now being tested for the STF 
calculations. No such difficulties were noticed in the momentum calculation because the 
fluctuations were more ‘wave-like’ and therefore amenable to centred difference discretizations 
precision in the calculation of high frequency activity. 

An additional difficulty in the passive scalar calculation could be the assumption of Clark’s 
reduction. In its original derivation the reduction technique assumed that the fluctuations were 
wave-like in character. It is apparent that the EA spikes are not wave-like and therefore a possible 
violation of assumption seems likely. As noted in Table I a form of the STF equations without 
Clark’s reduction was derived and subsequently solved for the conditions described in this paper. 
The results for the concentration are indistinguishable from those presented here (Figure 5, A6), 
suggesting that a Clark’s reduction is not a problem even for the spike-like behaviour simulated 
here. The authors conclude that a more effective numerical discretization of the advective term of 
the scalar transport equation is necessary. 

The second item to be discussed is the question of the averaging used to obtain the EA curves. To 
be completely consistent the averaging method used to prepare each set of model equations should 
have been used to prepare the exact average data results. To perform space-time or two- 
dimensional filtering is a convolution problem requiring large computing and financial resources, 
resources which the authors did not have. Therefore it is possible to ascribe some of the differences 
between the calculated and EA curves to inconsistent filtering. As per the previous discussion, the 
authors do attribute the poor statistical results for all model types (except perhaps A l )  to the 
averaging methods. However the averaging problem is confined to those statistical outputs which 
are quite sensitive to the averaging method. In this case, the spectra calculations are less dependent 
and the energy structure is independent of the method used to derive the EA, Clearly the 
improvements in the results are a result of the newer filtering procedure and not a result of an 
inconsistent averaging preparation of data. 

CONCLUSIONS 

A new space-time filter has been developed and shows considerable promise in calculating 
turbulent, fluctuating flow and passive scalar fields. The filter, constructed of Gaussian 
components in both space and time, results in a sequence of third order terms added to the 
governing equations which can be reduced in order, without loss of accuracy, by Clark’s reduction. 
Closure by a time and space averaged Smagorinsky model is adequate for the simulations 
experimented with in this paper. 

A filter evaluation procedure based upon a newly derived dynamic ‘exact’ solution of a Burgers’ 
type equation for momentum and scalar transport proved satisfactory, however the method of 
reducing the dense ‘exact’ data to averaged form requires further research. In comparison to 
calculations made with all other available equation averaging methods the STF permits, for a given 
coarse grid, improved calculation of (1) the distributions of the time varying dependent variables, 
(2) the wave number and frequency spectra and (3) the structure the energy equation. The highly 
improved energy calculation is also marked by a significant contribution from the new terms 
resulting from the time filter portion of the space-time filter. An improved discretization scheme is 
required for the first order advection term in the passive scalar equation. 
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